Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site.

نویسندگان

  • Shen Luo
  • Hiroyuki Ishida
  • Amane Makino
  • Tadahiko Mae
چکیده

Previous work has demonstrated that the large subunit (rbcL) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) from wheat is cleaved at Gly-329 by the Fe(2+)/ascorbate/H(2)O(2) system (Ishida, H., Makino, A., and Mae, T. (1999) J. Biol. Chem. 274, 5222-5226). In this study, we found that the rbcL could also be cleaved into several other fragments by increasing the incubation time or the Fe(2+) concentration. By combining immunoblotting with N-terminal amino acid sequencing, cleavage sites were identified at Gly-404, Gly-380, Gly-329, Ala-296, Asp-203, and Gly-122. Conformational analysis demonstrated that five of them are located in the alpha/beta-barrel, whereas Gly-122 is in the N-terminal domain but near the bound metal in the adjacent rbcL. All of these residues are at or very close to the active site and are just around the metal-binding site within a radius of 12 A. Furthermore, their C(alpha)H groups are completely or partially exposed to the bound metal. A radical scavenger, activation of RuBisCo, or binding of a reaction-intermediate analogue to the activated RuBisCo, inhibited the fragmentation. These results strongly suggest that the rbcL is cleaved by reactive oxygen species generated at the metal-binding site and that proximity and favorable orientation are probably the most important parameters in determining the cleavage sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of Pisum sativum Rubisco with bound ribulose 1,5-bisphosphate.

The first structure of a ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from a pulse crop is reported. Rubisco was purified from Pisum sativum (garden pea) and diffraction-quality crystals were obtained by hanging-drop vapour diffusion in the presence of the substrate ribulose 1,5-bisphosphate. X-ray diffraction data were recorded to 2.20 Å resolution from a single crystal at the Can...

متن کامل

Assessment of structural and functional divergence far from the large subunit active site of ribulose-1,5-bisphosphate carboxylase/oxygenase.

Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to a...

متن کامل

Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-A resolution.

The structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase was refined at a resolution of 2.0 A to an R-factor of 17.1%. The previous model (Chapman et al., 1988) was extensively rebuilt, and the small subunit was retraced. The refined model consists of residues 22-63 and 69-467 of the large subunit and the complete small subunit. A striking feature of the model is...

متن کامل

Mutations in the small subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase increase the formation of the misfire product xylulose-1,5-bisphosphate.

The small subunit (S) increases the catalytic efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) by stabilizing the active sites generated by four large subunit (L) dimers. This stabilization appears to be due to an influence of S on the reaction intermediate 2,3-enediol, which is formed after the abstraction of a proton from the substrate ribulose-1,5-bisphosphate. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 14  شماره 

صفحات  -

تاریخ انتشار 2002